Discovery of Superconductivity in Hard Hexagonal ε-NbN

نویسندگان

  • Yongtao Zou
  • Xintong Qi
  • Cheng Zhang
  • Shuailing Ma
  • Wei Zhang
  • Ying Li
  • Ting Chen
  • Xuebing Wang
  • Zhiqiang Chen
  • David Welch
  • Pinwen Zhu
  • Bingbing Liu
  • Qiang Li
  • Tian Cui
  • Baosheng Li
چکیده

Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hexagonal-structured ε-NbN: ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles ...

متن کامل

Superconducting Properties of MgB2 Thin Films Prepared on Flexible Plastic Substrates

130 LLE Review, Volume 91 The recent discovery of superconductivity at 39 K in hexagonal magnesium diborides1 has stimulated very intensive investigations of the fundamental mechanism of superconductivity in MgB2 as well as the possible practical applications of this new superconductor. In comparison with high-temperature cuprates, MgB2 superconductors have more than two-timeslower anisotropy, ...

متن کامل

Magnetoresistance, Gating and Proximity Effects in Ultrathin NbN-Bi2Se3 Bilayers

Ultrathin Bi2Se3-NbN bilayers comprise a simple proximity system of a topological insulator and an s-wave superconductor for studying gating effects on topological superconductors. Here we report on 3 nm thick NbN layers of weakly connected superconducting islands, overlayed with 10 nm thick Bi2Se3 film which facilitates enhanced proximity coupling between them. Resistance versus temperature of...

متن کامل

Superconductivity of hexagonal heavily-boron doped silicon carbide

In 2004 the discovery of superconductivity in heavily boron-doped diamond (C:B) led to an increasing interest in the superconducting phases of wide-gap semiconductors. Subsequently superconductivity was found in heavily boron-doped cubic silicon (Si:B) and recently in the stochiometric ”mixture” of heavily boron-doped silicon carbide (SiC:B). The latter system surprisingly exhibits type-I super...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016